Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 229, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867198

RESUMO

BACKGROUND: Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS: Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS: Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.


Assuntos
Venenos de Abelha , Abelhas/genética , Animais , Perfilação da Expressão Gênica , Transcriptoma , Genômica , Duplicação Gênica
2.
mSystems ; 8(1): e0092922, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36656037

RESUMO

From protocellular to societal, networks of living systems are complex and multiscale. Discerning the factors that facilitate assembly of these intricate interdependencies using pairwise interactions can be nearly impossible. To facilitate a greater understanding, we developed a mathematical and computational model based on a synthetic four-strain Saccharomyces cerevisiae interdependent system. Specifically, we aimed to provide a greater understanding of how ecological factors influence community dynamics. By leveraging transiently structured ecologies, we were able to drive community cohesion. We show how ecological interventions could reverse or slow the extinction rate of a cohesive community. An interconnected system first needs to persist long enough to be a subject of natural selection. Our emulation of Darwin's "warm little ponds" with an ecology governed by transient compartmentalization provided the necessary persistence. Our results reveal utility across scales of organization, stressing the importance of cyclic processes in major evolutionary transitions, engineering of synthetic microbial consortia, and conservation biology. IMPORTANCE We are facing unprecedented disruption and collapse of ecosystems across the globe. To have any hope of mitigating this phenomenon, a much greater understanding of ecosystem dynamics is required. However, ecosystems are typically composed of highly dynamic networks of individual species. These interactions are further modulated by abiotic and biotic factors that vary temporally and spatially. Thus, ecological dynamics are obfuscated by this complexity. Here, we developed a theoretical model, informed by a synthetic experimental system, of Darwin's "warm little ponds." This cycling four-species system seeks to elucidate the ecological factors that drive or inhibit interaction. We show that these factors could provide an essential tool for avoiding the accelerating ecological collapse. Our study also provides a starting point to develop a more encompassing model to inform conservation efforts.


Assuntos
Ecossistema , Modelos Teóricos , Evolução Biológica , Consórcios Microbianos , Saccharomyces cerevisiae
3.
Insects ; 12(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34564282

RESUMO

Apis mellifera (honeybees) are a well-established model for the study of learning and cognition. A robust conditioning protocol, the olfactory conditioning of the proboscis extension response (PER), provides a powerful but straightforward method to examine the impact of varying stimuli on learning performance. Herein, we provide a protocol that leverages PER for classroom-based community or student engagement. Specifically, we detail how a class of high school students, as part of the Ryukyu Girls Outreach Program, examined the effects of caffeine and dopamine on learning performance in honeybees. Using a modified version of the PER conditioning protocol, they demonstrated that caffeine, but not dopamine, significantly reduced the number of trials required for a successful conditioning response. In addition to providing an engaging and educational scientific activity, it could be employed, with careful oversight, to garner considerable reliable data examining the effects of varying stimuli on honeybee learning.

4.
Biol Lett ; 13(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28539458

RESUMO

An animal's decision to enter into a fight depends on the interaction between perceived resource value (V) and fighting costs (C). Both could be altered by predictable environmental fluctuations. For intertidal marine animals, such as the sea anemone Actinia equina, exposure to high flow during the tidal cycle may increase V by bringing more food. It may also increase C via energy expenditure needed to attach to the substrate. We asked whether simulated tidal cycles would alter decisions in fighting A. equina We exposed some individuals to still water and others to simulated tidal cycles. To gain insights into V, we measured their startle responses before and after exposure to the treatments, before staging dyadic fights. Individuals exposed to flow present shorter startle responses, suggesting that flowing water indicates high V compared with still water. A higher probability of winning against no-flow individuals and longer contests between flow individuals suggests that increased V increases persistence. However, encounters between flow individuals were less likely to escalate, suggesting that C is not directly related to V. Therefore, predictable environmental cycles alter V and C, but in complex ways.


Assuntos
Anêmonas-do-Mar , Animais , Comportamento Animal , Meio Ambiente , Probabilidade , Reflexo de Sobressalto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...